个人简介
3044am永利集团“百人计划”副教授,硕士生导师。清华大学博士,香港理工大学博士后,美国加州大学伯克利分校访问学者。主要研究方向:基础设施智能温控技术,能源地下结构,光伏建筑一体化,可再生能源利用,建筑节能技术。主持或参与科研项目7项。在 Renewable and Sustainable Energy Reviews(IF=14.982),Applied Energy (IF=8.848),Energy Conversion and Management (IF=8.208),Journal of Cleaner Production (IF=7.246),Energy (IF=6.082)等JCR一区顶级SCI期刊发表论文30余篇,总引用次数超过1290次,h因子达21,i10因子达26。发表国内外会议论文10余篇,中文核心期刊论文7篇。授权国家发明专利2项,软件著作权2项,在顶级学术出版社Springer Nature出版英文专著1部。
工作经历
2020.04-至今, 3044am永利集团 3044am永利集团 副教授
2018.01-2020.04, 香港理工大学 屋宇设备工程学系 博士后
2016.02-2017.02, 美国加州大学伯克利分校 土木与环境工程系 访问学者
研究方向
基础设施智能温控技术,能源地下结构,光伏建筑一体化,可再生能源利用,建筑节能技术
教学活动
《土木工程测量》《房屋建筑学》(本科生课程)
《学术规范与论文写作》《土木水利案例分析》(研究生课程)
主持科研项目
[1] 广东省基础与应用基础研究基金-面上项目. (2024.01-2026.12),在研,主持.
[2] 国家自然科学基金委,青年基金项目,(2022.01-2024.12),在研,主持.
[3] 广东省基础与应用基础研究基金区域联合基金-青年基金项目. (2020.10-2023.09),在研,主持.
[4] 广东省基础与应用基础研究基金-面上项目. (2021.01-2023.12),在研,主持.
[5] 3044am永利集团“百人计划”引进人才科研启动项目. (2020-2022),在研,主持.
[6] 广东省基础与应用基础研究基金区域联合基金-重点基金项目. (2020.10-2023.09),在研,参与.
学术兼职
[1] 国际制冷协会E1委员会青年委员
[2] 中国岩石力学与工程学会能源地下结构与工程专委会委员
[3] 中国仿真学会建筑仿真专业委员会委员
[3] 广东省岩土力学与工程学会青年工作委员会委员
[4] 受邀担任SCI和SSCI检索期刊Sustainability(IF=2.576)的客座编辑
[5] 担任Applied Energy, Energy, Energy Conversion and Management, Applied Thermal Engineering, Geothermics, International Journal of Refrigeration, Energy and buildings等多个SCI期刊审稿人
[6] 荣获 Energy (IF=5.537), Applied Thermal Engineering (IF=4.725), Geothermics (IF=3.470)等期刊杰出审稿人
主要获奖及荣誉
[1] 2020,入选3044am永利集团“百人计划”引进人才项目
[2] 2015,河南省建设科技进步一等奖
[3] 2016,世界暖通空调学生竞赛第三名
[4] 2016,博士生国家奖学金
[5] 2015,蒋南翔奖学金 (清华大学一等奖学金, 全校本硕博共20名)
[6] 2015,清峰“前置式”奖学金 (清华大学研究生共30名)
[7] 2014,清华大学优秀毕业生
[8] 2010,本科生国家奖学金
[9] 2008,本科生国家奖学金
主要英文期刊论文著作
[1] W Wu, XT Li, T You. Absorption Heating Technologies: Efficient Heating, Heat Recovery and Renewable Energy (ISBN: 978-981-15-0469-3). Springer, Singapore, 2019. (英文专著)
[2] T You, Y Zhang, S Zhou, et al. Investigation on the heat transfer performance of a novel composite energy geo-structure with energy piles and boreholes[J]. Renewable Energy, 2023: 119614.
[3] F. Wang and T. You*, Synergetic performance improvement of a novel BIPV/T-energy pile system for co-utilization of solar and shallow-geothermal energy, Energy Conversion and Management, 2023, 288, 117116. (IF:11.533)
[4] T. You* and F. Wang, Green ground source heat pump using various low- low-global-warming-potential refrigerants: thermal imbalance and long-term performance, Renewable Energy, 2023, 210:159-173. (IF:8.634)
[5] F. Wang, T. You*. Comparative analysis on the life cycle climate performance of ground source heat pump using alternative refrigerants. Case Studies in Thermal Engineering, 2023: 102761.
[6] Zhou S, Zhu L, Wan R, et al. An Overview of Sandbox Experiment on Ground Heat Exchangers[J]. Sustainability, 2023, 15(14): 11095.
[7] T. You*, W. Zeng. Zoning operation of energy piles to alleviate the soil thermal imbalance of ground source heat pump systems. Energy and Built Environment, 2023, 4(1): 57-63.
[8] Y. Zhang, T. You*, Z. Sun, et al. Performance of thermal management for ballastless track plate of high-speed railway in hot regions. Case Studies in Thermal Engineering, 2022, 40: 102525.
[9] T. You*, W. Wu, H. Yang.Hybrid photovoltaic/thermal and ground source heat pump: Review and perspective. Renewable and Sustainable Energy Reviews, 2021, 151, 111569.
[10] T. You, X. Li*, H. Yang*. Modifications to the conventional design methods for borehole heat exchangers based on a novel response factor model. Energy and Buildings, 2021, 238, 110848.
[11] T. You, H. Yang*. Feasibility of ground source heat pump using spiral coil energy piles with seepage for hotels in cold regions. Energy Conversion and Management, 2020, 205, 112466.
[12] T. You, H. Yang*. Influences of different factors on the three-dimensional heat transfer of spiral energy pile group with seepage. International Journal of Low-Carbon Technologies, 2020, 00, 1-13.
[13] T. You*, X. Li, S. Cao, H. Yang*. Soil thermal imbalance of ground source heat pump systems with spiral-coil energy pile groups under seepage conditions and various influential factors. Energy Conversion and Management, 2018, 178: 123-136.
[14] T. You, B. Wang, X. Li, et al. A general distributed parameter model for ground heat exchangers with arbitrary shape and type of heat sources. Energy Conversion and Management, 2018, 164: 667-679.
[15] T. You, X. Li, W. Wu, et al. Coupled heating of ground-coupled heat pump system with heat compensation unit: Performance improvement and borehole reduction, Energy Conversion and Management, 2017, 148: 57- 67.
[16] T. You, W. Shi, B. Wang, et al. A fast distributed parameter model of ground heat exchanger based on response factor. Building Simulation, 2017(10)2: 1-10.
[17] T. You, W. Wu, W. Shi, et al. An overview of the problems and solutions of soil thermal imbalance of ground-coupled heat pumps in cold regions. Applied Energy, 2016, 177: 515-536.
[18] T. You, W. Shi, B. Wang, et al. A new ground-coupled heat pump system integrated with a multi-mode air-source heat compensator to eliminate thermal imbalance in cold regions, Energy and Buildings, 2015, 107: 103-112.
[19] T. You, B. Wang, W. Wu, et al. Performance analysis of hybrid ground-coupled heat pump system with multi-functions, Energy Conversion and Management, 2015, 92: 47-59.
[20] T. You, B. Wang, W. Wu, et al. A new solution for underground thermal imbalance of ground-coupled heat pump systems in cold regions: Heat compensation unit with thermosyphon, Applied Thermal Engineering, 2014, 64(1): 283-292.
[21] W. Wu, T. You, X. Li. Performance Comparisons of NH3/Ionic Liquid Absorption-Compression Heat Pump for Increasing the Utilization of Geothermal Energy, International Journal of Refrigeration, 2019,104:19-33.
[22] Wu W, You T, Leung M. Screening of novel water/ionic liquid working fluids for absorption thermal energy storage in cooling systems. International Journal of Energy Research, 2019.
[23] W. Wu, T. You, J. Wang, et al. A novel internally hybrid absorption-compression heat pump for performance improvement. Energy Conversion and Management, 2018, 168: 237-251.
[24] W. Wu, T. You, H. Zhang, et al. Comparisons of different ionic liquids combined with trans-1, 3, 3, 3-tetrafluoropropene (R1234ze (E)) as absorption working fluids. International Journal of Refrigeration, 2018, 88: 45-57.
[25] W. Wu, T. You, B. Wang, et al. Evaluation of ground source absorption heat pumps combined with borehole free cooling. Energy Conversion and Management, 2014, 79: 334-343.
[26] W. Wu, T. You, B. Wang, et al. Simulation of a combined heating, cooling and domestic hot water system based on ground source absorption heat pump. Applied Energy, 2014, 126: 113-122.
[27] Pan A, McCartney J S, Lu L, YOU T. A novel analytical multilayer cylindrical heat source model for vertical ground heat exchangers installed in layered ground. Energy, 2020: 117545.
国际会议论文
[1] Fang Wang, T. You*. Environmental analyses on GSHPs using various low-GWP refrigerants, The 14th International Conference on Applied Energy, Virtual/Germany, 2022.
[2] T. You*, P. Li. Performance Analysis on Heat Transfer Enhancement of Energy Pile with Nanofluid, 11th Conference of Asian Rock Mechanics Society, Beijing, China, 2021.
[3] T. You, H. Yang. The performance analysis of ground source heat pump using spiral coil energy piles with seepage in different climates of cold regions, SET 2019, Kuala Lumpur, Malaysia, 2019.
[4] T. You, X. Li, H. Yang. Modifications to the conventional design methods for borehole heat exchangers based on a novel response factor model, 1st ICCEBE, Cheng Du, China, 2019.
[5] T. You, H. Yang. Influences of different factors on the three-dimensional heat transfer of spiral energy pile groups with seepage, ASIM, Hong Kong, China, 2018.
[6] T. You, X. Li, W. Wu, et al. The coupled heating optimization of hybrid GCHP system with heat compensation unit, IGSHPA, Denver, USA, 2017.
[7] T. You, X. Li, W. Shi, et al. Fast and accurate calculation of the soil temperature distribution around ground heat exchanger based on RF model, IGSHPA, Denver, USA, 2017.
[8] T. You, W. Shi, W. Wu, et al. A Fast Distributed Parameter Model of Ground-coupled Heat Exchanger Based on Response Factor, The 8th International Cold Climate HVAC Conference, Dalian, China, 2015.
[9] T. You, W. Shi, W. Wu, et al. A new ground-coupled heat pump system integrated with multi-mode air-water heat exchanger to eliminate thermal imbalance, ICR 2015, Yokohama, Japan, 2015.
[10] T. You, W. Shi, W. Wu, et al. Optimization of the operating strategy of heat compensation unit for seasonal energy storage in GCHP system, The 13th International Conference on Energy Storage, Beijing, China, 2015.
[11] T. You, W. Wu, B. Wang, et al. Dynamic Soil Temperature of Ground-Coupled Heat Pump System in Cold Region, Proceedings of the 8th International Symposium on Heating, Ventilation and Air Conditioning. Springer Berlin Heidelberg, 2014: 439-448.
[12] T. You, W. Wu, B. Wang, et al. Evaluation of a novel hybrid ground-coupled heat pump system with heat compensation and domestic hot water supply, SET, Hong Kong, 2013
中文核心期刊论文
[1] 游田, 石文星, 王宝龙. 空气-土壤双源热泵系统在我国北方地区应用效果分析, 暖通空调, 2016, 42(12): 40-45.
[2] 游田, 吴伟, 王宝龙等.复合补热地源热泵系统设计方法研究与应用, 暖通空调, 2015,45(5):34-38.
[3] 游田, 吴伟, 李先庭等.太阳能在夏热冬冷地区土壤源热泵系统中的耦合应用, 建筑科学, 2014,30(12): 20-24.
[4] 蔡之钰, 游 田*, 李先庭. 活体动物运输车厢空气流动及传热特性模拟与优化. 农业工程学报, 2016, 32(20):223-228. (EI)
[5] 纪文杰, 游田, 白绍文等. 埋管设计对寒冷地区土壤源热泵系统性能的影响. 暖通空调, 2015, 03:113-118.
[6] 李炳田, 游田, 王宝龙等. 复合补热地源热泵系统在北方地区的应用效果分析. 建筑科学, 2012, 28(增刊2): 178-183.
中国专利
[1] 刘建坤,游田,张永正.一种高速铁路无砟轨道板温度调控系统,中国,2023101071107, 2023.(已受理)
[2] 游田,张永正,黄奕瑜,闫桐瑞,何文强. 一种分层梯级相变纳米地下换热结构及热泵系统,中国,202310005061.6, 2022. (已受理)
[3] 游田, 王芳, 任思懿. 一种能源桩-建筑光伏光热耦合系统及其控制方法,中国,202211377689.0, 2022. (已受理)
[4] 游田,刘建坤,李沛余. 一种用于土壤温度调控的复合型热棒及其控制方法, 中国, 202011275916.X.(已公开)
[5] 李先庭, 游田, 王宝龙,等.一种从环境取热的土壤源热泵系统及运行方法, 中国, ZL201510007957.3, 2017.(发明专利授权,导师一作)
[6] 李先庭,吴伟, 游田 等.一种三用型地源吸收式热泵系统及运行方法. 中国. ZL201310560504.4, 2016.(发明专利授权)
软件著作权
[1] 王宝龙, 游田, 李先庭. 地埋管地源热泵系统性能预测软件, 2015SR167968, 原始取得, 全部权利, 2015-05.
[2] 杨洪兴, 游田, 张文科. 螺旋管能源桩地源热泵系统性能模拟软件[简称:能源桩之星(EP-Star)]V1.0, 2019SR1138438, 原始取得, 全部权利, 2019-04.
寄语学生
课题组长期招聘博士后及研究生,欢迎对能源地下结构、可再生能源利用及建筑节能技术感兴趣的有志青年加入。